AUSTRALIA TEST REPORT

For

Foshan Zaoyi Technology Co., Ltd

Automatic dumpling machine

Test Model: GT001

Prepared for : Foshan Zaoyi Technology Co., Ltd

Address : 11th Floor, The Center, 99 Queen's Road Central, Central,

Hong Kong

Prepared by : Shenzhen AOCE Electronic Technology Service Co., Ltd

Address : Room 202, 2nd Floor, No.12th Building of Xinhe Tongfuyu

Industrial Park, Fuhai Street, Baoan District, Shenzhen,

Guangdong, China

Tel : (86)755-29799330
Fax : (86)755-23705230
Web : //www.aoc-cert.com

Mail : postmaster@aoc-cert.com

Date of receipt of test sample : July 26, 2025

Number of tested samples : 1

Date of Test : July 26, 2025 ~ July 29, 2025

Date of Report : July 29, 2025

AUSTRALIA TEST REPORT AS/NZS CISPR 14.1:2021

Electromagnetic Compatibility - Requirements for household appliances, electrical tools and similar apparatus - Emission

Report Reference No. AOC250729116E

Date Of Issue: July 29, 2025

Testing Laboratory Name.....: Shenzhen AOCE Electronic Technology Service Co., Ltd

Address: Room 202, 2nd Floor, No.12th Building of Xinhe Tongfuyu

Industrial Park, Fuhai Street, Baoan District, Shenzhen,

Guangdong, China

Testing Location/ Procedure: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name Foshan Zaoyi Technology Co., Ltd

Hong Kong

Test Specification:

Standard : AS/NZS CISPR 14.1:2021

Shenzhen AOCE Electronic Technology Service Co., Ltd All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen AOCE Electronic Technology Service Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen AOCE Electronic Technology Service Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Automatic dumpling machine

Trade Mark 灶为易

Test Model GT001

Ratings : Input: AC 220-240V, 50/60Hz, 4500W

Result Positive

Compiled by: Supervised by:

Approved by:

David Lik

Kevin Huang

Jackson Fang

David Liu/ File administrators

Kevin Huang/ Technique principal

Jackson Fang/ Manager

AUSTRALIA -- TEST REPORT

Test Report No.: AOC250729116E

July 29, 2025

Date of issue

Test Model....: GT001

EUT.....: : Automatic dumpling machine

Applicant.....:: Foshan Zaoyi Technology Co., Ltd

Address.....: 11th Floor, The Center, 99 Queen's Road Central, Central,

Hong Kong

Manufacturer.....: Foshan Zaoyi Technology Co., Ltd

Address.....: 11th Floor, The Center, 99 Queen's Road Central, Central,

Hong Kong

Factory.....:: Foshan Zaoyi Technology Co., Ltd

Address.....: 11th Floor, The Center, 99 Queen's Road Central, Central,

Hong Kong

Test Result according to the standards on page 6:

Positive

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENTS

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	5
1.1.Description of Standards and Results	5
2. GENERAL INFORMATION	6
2.1.Description of Device (EUT)	
2.3. Statement of the measurement uncertainty	
2.4.Measurement Uncertainty	
3. MEASURING DEVICES AND TEST EQUIPMENT	8
3.1. Conducted Disturbance	
3.2. Radiated Emission	8
4. POWER LINE CONDUCTED MEASUREMENT	9
4.1.Block Diagram of Test Setup	9
4.2.Conducted Power Line Emission Measurement Standard and Limits	
4.3.EUT Configuration on Test	9
4.4.Operating Condition of EUT	9
4.5.Test Procedure	10
4.6.Test Results	10
5. RADIATED EMISSION MEASUREMENT	13
5.1.Block Diagram of Test Setup	13
5.2.Test Standard	13
5.3.Radiated Emission Limits	13
5.4.EUT Configuration on Test	14
5.5.Operating Condition of EUT	14
5.6.Test Procedure	14
5.7.Test Results	14
6. DISTURBANCE POWER MEASUREMENT	17
6.1.Block Diagram of Test Setup	17
6.2.Test Standard	17
6.3.Disturbance Power Limits	17
6.4.EUT Configuration on Test	18
6.5.Operating Condition of EUT	18
6.6.Test Procedure	18
6.7.Test Results	18
7. PHOTOGRAPH	19
7.1. Photo of Power Line Conducted Measurement	19
8. EXTERNAL AND INTERNAL PHO TOS OF THE EUT	20

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION						
Description of Test Item	Standard	Limits	Results			
Conducted disturbance at mains terminals	AS/NZS CISPR 14.1:2021		PASS			
Radiated Emission 30MHz to 1000MHz	AS/NZS CISPR 14.1:2021		PASS			
Radiated Emission 1GHz to 6GHz	AS/NZS CISPR 14.1:2021		N/A			
IGHZ to 6GHZ			NOTE (2)			
Disturbance Power	AS/NZS CISPR 14.1:2021		N/A			
			NOTE (3)			

Note:

- (1) "N/A" denotes test is not applicable in this Test Report
- (2) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.

If the highest frequency of the internal sources of the EUT is between 500 MHz and 1GHz, the measurement shall only be made up to 5 GHz.

If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times of the highest frequency or 6 GHz, whichever is less.

(3) If the disturbance power emission from the EUT is lower than the limits of Table 7 reduced by the values of Table 8 and the maximum clock frequency is more than 30MHz, radiated measurements in the frequency from 30MHz to 1000MHz shall be performed.

Test mode:		
Mode 1	Normal operation	Record

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

EUT : Automatic dumpling machine

Test Model : GT001

Additional Model : /

Model Declaration :

Power Supply : Input: AC 220-240V, 50/60Hz, 4500W

EUT Clock Frequency : <108MHz

2.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the AOCE quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.4. Measurement Uncertainty

Test	Parameters	Expanded uncertainty (Ulab)	Expanded uncertainty (Ucispr)
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 3.8 dB ± 3.4 dB
Power disturbance	Level accuracy (30MHz to 300MHz)	± 2.90dB	± 4.5 dB
Electromagnetic Radiated Emission (3-loop)	Level accuracy (9kHz to 30MHz)	± 3.60 dB	± 3.3 dB

Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.3 dB
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	± 5.2 dB
Mains Harmonic	Voltage	± 0.510%	N/A
Voltage Fluctuations & Flicker	Voltage	± 0.510%	N/A
EMF		± 21.59%	N/A

- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%

3. MEASURING DEVICES AND TEST EQUIPMENT

3.1. Conducted Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	SKET	EMC-I	V1.4.0.3	N/A	N/A
2	EMI Test Receiver	R&S	ESPI	101840	2025-06-09	2026-06-08
3	Artificial Mains	R&S	ENV216	101288	2025-06-09	2026-06-08
4	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2025-06-09	2026-06-08
5	Impedance Stabilization Network	TESEQ	ISN T800	45130	2025-06-09	2026-06-08

3.2. Radiated Emission

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	SKET	EMC-I	V1.4.0.3	N/A	N/A
2	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2025-06-09	2026-06-08
3	Positioning Controller	MF	MF-7082	/	2025-06-09	2026-06-08
4	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2025-06-09	2026-06-08
5	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2025-06-09	2026-06-08
6	EMI Test Receiver	R&S	ESR 7	101181	2025-06-09	2026-06-08
7	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2025-06-09	2026-06-08
8	Broadband Preamplifier	/	BP-01M18G	P190501	2025-06-09	2026-06-08
9	RF Cable-R03m	Jye Bao	RG142	CB021	2025-06-09	2026-06-08
10	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2025-06-09	2026-06-08

4. POWER LINE CONDUCTED MEASUREMENT

4.1.Block Diagram of Test Setup

4.2. Conducted Power Line Emission Measurement Standard and Limits

4.2.1.Standard:

AS/NZS CISPR 14.1:2021

4.2.2.Limits

Frequency	Limit (dBμV)
(MHz)	Quasi-peak Level	Average Level
0.15 ~ 0.50	66.0 ~ 56.0 *	59.0 ~ 46.0 *
0.50 ~ 5.00	56.0	46.0
5.00 ~ 30.00	60.0	50.0

- 1. At the transition frequency the lower limit applies.
- 2. * decreasing linearly with logarithm of the frequency.

4.3.EUT Configuration on Test

The configuration of the EUT is same as Section 2.1.

4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT as shown in Section 4.1.
- 4.4.2. Turn on the power of all equipments.
- 4.4.3.Let the EUT work in test Mode 1 and measure it.

4.5.Test Procedure

The EUT is put on the table which is 0.8 meter high above the ground and connected to the AC mains through a Line Impedance Stabilization Network (L.I.S.N.). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission according to the CISPR 14.1 regulations during conducted emission measurement. And the voltage probe had been used for the load terminals measurement according to the CISPR 14.1 standard.

The bandwidth of the field strength meter is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated. The scanning waveform please refer to the next page.

4.6.Test Results

PASS.

All the scanning waveform is in next page.

Test Mode	el	GT00)1	· · · · · · · · · · · · · · · · · · ·	Test	Mode	Mode 1	
Environm	vironmental Conditions 22.6°C, 52.9% RH				Test	Engineer	Andy Liu	
Pol		Line				Voltage	AC 240V/	50Hz
100-								
90-								
80-								_
70								
70-								
€ 60-								- 6
Fevel(dBuV)						1 3		in ka
€ 50-1		2			4	La de La	lahamakan medika	
<u>9</u> 40-	$1 \sim 1000$	MANUAL	3	toll L I	والمراران المراران	hughly half		ļ,
20	<u>7</u> "	8 I JANANA	HOM-MENTAL HOLD	A PROPERTY OF THE PERSON NAMED IN COLUMN NAMED	ill to the last			
30-	morning	Mary Mary		10	والمرا والطاط والتال	والمالاته فالكامار	11	Habi
20-			1 1 1 1 1 1 1 1 1			Mary Charles	W Declarate	
					and the second			enenellistet.
10-								
o-Џ							1	
150	k		1M			1	ОM	3
			L	.1 Frequ	ency(Hz)			
No.	_	Reading	Factor	Level	Limit	Margin	Detector	Polar
I NO I	Frequency	Reading					Lietector	Pola
110.	Frequency MHz	dBuV	dB	dBuV	dBuV	dB	Detector	1 Olai
1*	MHz 0.158	dBuV 36.79	10.74	47.53	65.57	dB -18.04	QP	L1
1* 2*	MHz 0.158 0.466	dBuV 36.79 35.00	10.74 10.90	47.53 45.90	65.57 56.58	-18.04 -10.68	QP QP	L1 L1
1* 2* 3*	MHz 0.158 0.466 0.922	dBuV 36.79 35.00 28.63	10.74 10.90 10.87	47.53 45.90 39.50	65.57 56.58 56.00	dB -18.04 -10.68 -16.50	QP QP QP	L1 L1 L1
1* 2* 3* 4*	MHz 0.158 0.466 0.922 4.426	dBuV 36.79 35.00 28.63 35.06	10.74 10.90 10.87 11.27	47.53 45.90 39.50 46.33	65.57 56.58 56.00 56.00	dB -18.04 -10.68 -16.50 -9.67	QP QP QP QP	L1 L1 L1
1* 2* 3* 4* 5*	MHz 0.158 0.466 0.922 4.426 8.018	dBuV 36.79 35.00 28.63 35.06 41.91	10.74 10.90 10.87 11.27 11.44	47.53 45.90 39.50 46.33 53.35	65.57 56.58 56.00 56.00 60.00	dB -18.04 -10.68 -16.50 -9.67 -6.65	QP QP QP QP QP	L1 L1 L1 L1
1* 2* 3* 4* 5* 6*	MHz 0.158 0.466 0.922 4.426 8.018 24.506	dBuV 36.79 35.00 28.63 35.06 41.91 43.85	10.74 10.90 10.87 11.27 11.44 11.83	47.53 45.90 39.50 46.33 53.35 55.68	65.57 56.58 56.00 56.00 60.00 60.00	dB -18.04 -10.68 -16.50 -9.67 -6.65 -4.32	QP QP QP QP QP QP	L1 L1 L1 L1 L1
1* 2* 3* 4* 5* 6* 7*	MHz 0.158 0.466 0.922 4.426 8.018 24.506 0.246	dBuV 36.79 35.00 28.63 35.06 41.91 43.85 19.55	10.74 10.90 10.87 11.27 11.44 11.83 10.79	47.53 45.90 39.50 46.33 53.35 55.68 30.34	65.57 56.58 56.00 56.00 60.00 60.00 53.66	dB -18.04 -10.68 -16.50 -9.67 -6.65 -4.32 -23.32	QP QP QP QP QP QP AV	L1 L1 L1 L1 L1 L1
1* 2* 3* 4* 5* 6* 7* 8*	MHz 0.158 0.466 0.922 4.426 8.018 24.506 0.246 0.418	dBuV 36.79 35.00 28.63 35.06 41.91 43.85 19.55 17.90	10.74 10.90 10.87 11.27 11.44 11.83 10.79 10.87	47.53 45.90 39.50 46.33 53.35 55.68 30.34 28.77	65.57 56.58 56.00 56.00 60.00 60.00 53.66 47.93	dB -18.04 -10.68 -16.50 -9.67 -6.65 -4.32 -23.32 -19.16	QP QP QP QP QP QP AV	L1 L1 L1 L1 L1 L1 L1
1* 2* 3* 4* 5* 6* 7* 8* 9*	MHz 0.158 0.466 0.922 4.426 8.018 24.506 0.246 0.418 0.778	dBuV 36.79 35.00 28.63 35.06 41.91 43.85 19.55 17.90 16.92	10.74 10.90 10.87 11.27 11.44 11.83 10.79 10.87	47.53 45.90 39.50 46.33 53.35 55.68 30.34 28.77 27.79	65.57 56.58 56.00 56.00 60.00 60.00 53.66 47.93 46.00	dB -18.04 -10.68 -16.50 -9.67 -6.65 -4.32 -23.32 -19.16 -18.21	QP QP QP QP QP QP AV AV	L1 L1 L1 L1 L1 L1 L1 L1
1* 2* 3* 4* 5* 6* 7* 8* 9*	MHz 0.158 0.466 0.922 4.426 8.018 24.506 0.246 0.418 0.778 1.402	dBuV 36.79 35.00 28.63 35.06 41.91 43.85 19.55 17.90 16.92 13.18	10.74 10.90 10.87 11.27 11.44 11.83 10.79 10.87 10.87	47.53 45.90 39.50 46.33 53.35 55.68 30.34 28.77 27.79 24.28	65.57 56.58 56.00 56.00 60.00 60.00 53.66 47.93 46.00	dB -18.04 -10.68 -16.50 -9.67 -6.65 -4.32 -23.32 -19.16 -18.21 -21.72	QP QP QP QP QP QP AV AV AV	L1 L1 L1 L1 L1 L1 L1 L1 L1
1* 2* 3* 4* 5* 6* 7* 8* 9*	MHz 0.158 0.466 0.922 4.426 8.018 24.506 0.246 0.418 0.778	dBuV 36.79 35.00 28.63 35.06 41.91 43.85 19.55 17.90 16.92	10.74 10.90 10.87 11.27 11.44 11.83 10.79 10.87	47.53 45.90 39.50 46.33 53.35 55.68 30.34 28.77 27.79	65.57 56.58 56.00 56.00 60.00 60.00 53.66 47.93 46.00	dB -18.04 -10.68 -16.50 -9.67 -6.65 -4.32 -23.32 -19.16 -18.21	QP QP QP QP QP QP AV AV	L1 L1 L1 L1 L1 L1 L1 L1

Test Mo	Iodel GT001				Tes	t Mode	Mode 1	
Enviror	nmental Condition	\sim 22.6°	C, 52.9%	RH	Tes	t Engineer	Andy Liu	
Pol		Neut	ral		Tes	t Voltage	AC 240V	/50Hz
100)-							
90)							
80) -							
70)-							
≥ 60								
Bu						5		6
(Ang) 50 40 40 40 40 40 40 40 40 40 40 40 40 40	1				3 4	Ju Mahasa	1. 11.1	T J
<u>40</u>	Mr. AMMining	admir.				Philippine		ا السال السال
	7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	A. A. L. L. Spirol Hills	A HILLIANDER	فيريقه للمفاوح ويرو		للمار عليات المرجور		Carren.
30		and the same of th		10 ""' '		1 . L. t. J. M. t. M. t. M. J. J.	2"	utalika.
20)-			AND DESCRIPTION OF THE PERSONS ASSESSED.	No. of Lot, House, etc., in such states	Para militari del	and a dear of	d July
					Maria and Addition	المتناول شطيع ومختا	The state of the s	The state of
10)-						The late of the late of	MAN SAME
10							The same of the same of	
0	,_[114			10		
0			1M	I Frequ	encv(Hz)	10	М	3
0	150k		N	I Frequ			М	3
0	150k Frequency	Reading	Factor	Level	Limit	Margin	Detector	
0 1 No.	Frequency MHz	dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
No. 1*	Frequency MHz 0.158	dBuV 34.33	Factor dB 10.68	Level dBuV 45.01	Limit dBuV 65.57	Margin dB -20.55	Detector	Polar N
No. 1* 2*	Frequency MHz 0.158 0.418	dBuV 34.33 32.33	Factor dB 10.68 10.82	Level dBuV 45.01 43.15	Limit dBuV 65.57 57.49	Margin dB -20.55 -14.34	Detector QP QP	Polar N N
No. 1* 2* 3*	Frequency MHz 0.158 0.418 2.686	dBuV 34.33 32.33 35.56	Factor dB 10.68 10.82 11.21	Level dBuV 45.01 43.15 46.77	Limit dBuV 65.57 57.49 56.00	Margin dB -20.55 -14.34 -9.23	Detector QP QP QP	Polar N N
No. 1* 2* 3* 4*	Frequency MHz 0.158 0.418 2.686 4.398	dBuV 34.33 32.33 35.56 35.22	Factor dB 10.68 10.82 11.21 11.29	Level dBuV 45.01 43.15 46.77 46.51	Limit dBuV 65.57 57.49 56.00 56.00	Margin dB -20.55 -14.34 -9.23 -9.49	Detector QP QP QP QP QP	Polar N N N
No. 1* 2* 3* 4* 5*	Frequency MHz 0.158 0.418 2.686 4.398 7.346	dBuV 34.33 32.33 35.56 35.22 39.92	Factor dB 10.68 10.82 11.21 11.29 11.42	Level dBuV 45.01 43.15 46.77 46.51 51.34	Limit dBuV 65.57 57.49 56.00 56.00 60.00	Margin dB -20.55 -14.34 -9.23 -9.49 -8.66	Detector QP QP QP QP QP QP	Polar N N N
No. 1* 2* 3* 4* 5* 6*	Frequency MHz 0.158 0.418 2.686 4.398 7.346 21.378	dBuV 34.33 32.33 35.56 35.22 39.92 37.23	Factor dB 10.68 10.82 11.21 11.29 11.42 11.79	Level dBuV 45.01 43.15 46.77 46.51 51.34 49.02	Limit dBuV 65.57 57.49 56.00 56.00 60.00	Margin dB -20.55 -14.34 -9.23 -9.49 -8.66 -10.98	Detector QP QP QP QP QP QP QP QP	Polar N N N N
No. 1* 2* 3* 4* 5* 6* 7*	Frequency MHz 0.158 0.418 2.686 4.398 7.346 21.378 0.210	dBuV 34.33 32.33 35.56 35.22 39.92 37.23 18.94	Factor dB 10.68 10.82 11.21 11.29 11.42 11.79 10.69	Level dBuV 45.01 43.15 46.77 46.51 51.34 49.02 29.63	Limit dBuV 65.57 57.49 56.00 56.00 60.00 60.00 55.37	Margin dB -20.55 -14.34 -9.23 -9.49 -8.66 -10.98 -25.73	Detector QP QP QP QP QP QP QP AV	Polar N N N N N
No. 1* 2* 3* 4* 5* 6* 7* 8*	Frequency MHz 0.158 0.418 2.686 4.398 7.346 21.378 0.210 0.386	dBuV 34.33 32.33 35.56 35.22 39.92 37.23 18.94 18.13	Factor dB 10.68 10.82 11.21 11.29 11.42 11.79 10.69 10.82	Level dBuV 45.01 43.15 46.77 46.51 51.34 49.02 29.63 28.95	Limit dBuV 65.57 57.49 56.00 56.00 60.00 60.00 55.37 48.79	Margin dB -20.55 -14.34 -9.23 -9.49 -8.66 -10.98 -25.73 -19.84	Detector QP QP QP QP QP QP AV AV	Polar N N N N N N
No. 1* 2* 3* 4* 5* 6* 7* 8* 9*	Frequency MHz 0.158 0.418 2.686 4.398 7.346 21.378 0.210 0.386 0.774	dBuV 34.33 32.33 35.56 35.22 39.92 37.23 18.94 18.13 16.86	Factor dB 10.68 10.82 11.21 11.29 11.42 11.79 10.69 10.82 10.83	Level dBuV 45.01 43.15 46.77 46.51 51.34 49.02 29.63 28.95 27.69	Limit dBuV 65.57 57.49 56.00 56.00 60.00 60.00 55.37 48.79 46.00	Margin dB -20.55 -14.34 -9.23 -9.49 -8.66 -10.98 -25.73 -19.84 -18.31	Detector QP QP QP QP QP QP AV AV	Polar N N N N N N
No. 1* 2* 3* 4* 5* 6* 7* 8*	Frequency MHz 0.158 0.418 2.686 4.398 7.346 21.378 0.210 0.386	dBuV 34.33 32.33 35.56 35.22 39.92 37.23 18.94 18.13	Factor dB 10.68 10.82 11.21 11.29 11.42 11.79 10.69 10.82	Level dBuV 45.01 43.15 46.77 46.51 51.34 49.02 29.63 28.95	Limit dBuV 65.57 57.49 56.00 56.00 60.00 60.00 55.37 48.79	Margin dB -20.55 -14.34 -9.23 -9.49 -8.66 -10.98 -25.73 -19.84	Detector QP QP QP QP QP QP AV AV	Polar N N N N N N

5. RADIATED EMISSION MEASUREMENT

5.1.Block Diagram of Test Setup

Below 1GHz

Above 1GHz

5.2.Test Standard

AS/NZS CISPR 14.1:2021

5.3. Radiated Emission Limits

All emanations from a class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

Limits for Radiated Emission Below 1GHz						
Frequency	Distance	Field Strengths Limit				
(MHz)	(Meters)	$(dB\mu V/m)$				
30 ~ 230	3	40				
230 ~ 1000	3	47				

***Note:

- (1) The smaller limit shall apply at the combination point between two frequency bands.
- (2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

Limits for Radiated Emission Above 1GHz							
Frequency	Distance	Peak Limit	Average Limit				
(MHz)	(Meters)	$(dB\mu V/m)$	(dBµV/m)				
1000 ~ 3000	3	70	50				
3000 ~ 6000	3	74	54				

^{***}Note: The lower limit applies at the transition frequency.

5.4.EUT Configuration on Test

The AS/NZS CISPR 14.1:2021 regulations test method must be used to find the maximum emission during radiated emission measurement.

5.5.Operating Condition of EUT

- 5.5.1 Turn on the power.
- 5.5.2 After that, let the EUT work in test Mode 1 and measure it.

5.6.Test Procedure

The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. By-log antenna (calibrated by Dipole Antenna) is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

The bandwidth of the Receiver is set at 120kHz.

The frequency range from 30MHz to 1000MHz is investigated.

5.7.Test Results

PASS.

All the scanning waveform is in next page.

Test Model	GT001	Test Mode	Mode 1
Environmental Conditions	23°C, 55% RH	Test Engineer	Andy Liu
Detector Function	Quasi-peak	Pol	Vertical
Distance	3m		

No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1	34.342	16.56	19.80	36.36	40.00	-3.64	QP	Ver
2	37.183	16.62	20.10	36.72	40.00	-3.28	QP	Ver
3	43.411	14.57	21.00	35.57	40.00	-4.43	QP	Ver
4	67.090	17.66	18.50	36.16	40.00	-3.84	QP	Ver
5	725.443	11.72	31.80	43.52	47.00	-3.48	QP	Ver
6	998.530	7.81	35.20	43.01	47.00	-3.99	QP	Ver

Test Model	GT001	Test Mode	Mode 1
Environmental Conditions	23°C, 55% RH	Test Engineer	Andy Liu
Detector Function	Quasi-peak	Pol	Horizontal
Distance	3m		

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Fuldi
1*	36.426	14.66	20.14	34.80	40.00	-5.20	QP	Hor
2*	65.284	17.27	18.91	36.18	40.00	-3.82	QP	Hor
3*	72.438	18.72	17.46	36.18	40.00	-3.82	QP	Hor
4*	178.531	15.60	19.54	35.14	40.00	-4.86	QP	Hor
5*	574.898	12.47	28.87	41.34	47.00	-5.66	QP	Hor
6*	994.180	7.54	35.04	42.58	47.00	-4.42	QP	Hor

6. DISTURBANCE POWER MEASUREMENT

6.1.Block Diagram of Test Setup

6.2.Test Standard

AS/NZS CISPR 14.1:2021

6.3. Disturbance Power Limits

All emanations from devices or system including any network of conductors and apparatus connected there to, shall not exceed the level of field strengths specified below:

Frequency	Limits dB(pW)				
MHz	Quasi-peak Value	Average Value			
30 ~ 300	45 Increasing Linearly	35 Increasing Linearly			
	with Frequency to 55	with Frequency to 45			

	Household a appliar		Tools					
1	2	3	4	5	6	7	8	9
Frequenc y range			Rated motor power not exceeding 700 W		Rated motor power above 700 W and not exceeding 1000 W		Rated motor power above 1000 W	
(MHz)	dB (pW) Quasi-peak	dB (pW) Average	dB (pW) Quasi-peak	dB (pW) Average	dB (pW) Quasi-peak	dB (pW) Average	dB (pW) Quasi-pea k	dB (pW) Average
Increasing linearly with the frequency from:								
200 to 300	0 to 10 dB	-	0 to 10 dB	-	0 to 10 dB	-	0 to 10 dB	-

NOTE 1 This table only applies if specified in 4.1.2.3.2.

NOTE 2 The measured result at a particular frequency shall be less than the relevant limit minus the corresponding margin (at that frequency).

6.4.EUT Configuration on Test

The CISPR 14.1 Regulations test method must be used to find the maximum emission during radiated emission measurement. The configuration of the EUT is the same as used in conducted emission measurement.

6.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 4.4, except the test set up replaced as Section 6.1.

6.6.Test Procedure

The EUT is placed on the plane 0.8m high above the ground by insulating support and away from other metallic surface at least 0.4m. It is connected to the power mains through an extension cord of 6m min. The absorber clamp clamps the cord and moves from the far end to the EUT to measure the disturbing energy emitted from the cord.

The bandwidth of the field strength meter is set at 120kHz.

All the test results are listed in Section 6.7.

6.7.Test Results

N/A.

7. PHOTOGRAPH

7.1. Photo of Power Line Conducted Measurement

8. EXTERNAL AND INTERNAL PHO TOS OF THE EUT

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

-----THE END OF TEST REPORT-----